Ta thấy làm việc nhị ví dụ trên đều phải có . Ta Call là 1 nguim hàm của . Vì với $C$ là một trong những hằng số bất kỳ, ta tất cả yêu cầu trường hợp là nguim hàm của thì cũng là 1 trong ngulặng hàm của . Ta Call Họ nguyên ổn hàm của .

Bạn đang xem: Nguyên hàm của 1/cosx

Ký hiệu:

VD: .

b) Tính chất

, $k$ là hằng số

dx=intfleft( x ight)dx+intgleft( x ight)dx>

dx=intfleft( x ight)dx-intgleft( x ight)dx>

2. Bảng nguim hàm của một vài hàm số thường xuyên gặp

*

3. Các phương thơm pháp

Phương thơm pháp 1. Áp dụng cách làm nguim hàm cơ bản

Ví dụ 1. Tìm các nguim hàm:

• x$I=intx^8dx=frac19x^9+C$

.• $I=intfracdxx^5=intx^-5dx=frac1-5+1x^-5+1+C=-frac14x^-4+C$

•$I=intfracdx2x=frac12int x ight$

• $I=int an 2xdx=intfracsin 2xcos 2xdx=-frac12int cos 2x ight$

• $I=intsin x.cos ^4xdx=-intcos ^4xdleft( cos x ight)=-frac15cos ^5x+C$

• $I=intfracsin x+cos xsin x-cos xdx=intfracdleft( sin x-cos x ight)sin x-cos x=ln left| sin x-cos x ight|+C$

• $I=intfrace^xdxe^x+1=intfracdleft( e^x+1 ight)e^x+1=ln left| e^x+1 ight|+C$

Phương thơm pháp 2. Phương thơm pháp thay đổi biến

a) Các dạng thay đổi đổi thay số thường xuyên gặp

*

*

b) Ví dụ

• $I=intsqrtx^2004+1.x^2003dx$

Đặt $t=x^2004+1Rightarrow dt=2004x^2003dxRightarrow x^2003dx=frac12004dt$. Từ kia ta được:

$I=frac12004intsqrttdt=frac12004intt^frac12dt=frac12004.frac23t^frac32+C$

$=frac13006sqrtt^3+C=frac13006sqrtleft( x^2004+1 ight)^3+C$

• $I=intx^2left( 1-x ight)^10dx$

Đặt $1-x=tRightarrow dx=-dt$. Từ kia ta được:

$O=intleft( 1-t ight)^2t^10left( -dt ight)=-intleft( 1-2t+t^2 ight).t^10dt=-intt^10dt+2intt^11dt-intt^12dt$

$,,,,,=-frac111t^11+frac16t^12-frac113t^13+C=-frac111left( 1-x ight)^11+frac16left( 1-x ight)^12-frac113left( 1-x ight)^13+C$

• $I=intfracsin x.cos ^3x1+cos ^2xdx=frac12intfrac2sin xcos x.cos ^2x1+cos ^2xdx=frac12intfraccos ^2x1+cos ^2x.sin 2xdx$

Đặt $1+cos ^2x=tRightarrow sin 2xdx=-dt$

$Rightarrow S=frac12fract-1tleft( -dt ight)=-frac12int+C$

Phương pháp 3. Phương pháp nguim hàm từng phần

a) Nội dung phương pháp

Pmùi hương pháp này hay được thực hiện lúc ta cần tính nguyên ổn hàm của một tích. Giả sử đề nghị tính $I=intf_1left( x ight).f_2left( x ight)dx$, ta làm nhỏng sau:

*

b) Chụ ý

Thứ đọng từ ưu tiên đặt $u$ vào phương pháp Nguyên ổn hàm từng phần:

Lôgarít $khổng lồ $ Đa thức $ o lớn $ Hàm lượng giác $ o $ Hàm mũ

c) Ví dụ

•$I=intx extsin2xdx$

*

$Rightarrow I=-frac12xcos 2x+frac12intcos 2xdx=-frac12xcos 2x+frac14sin 2x+C$

•$I=intxcos ^22xdx=intx.frac1+cos 4x2dx=frac12intxdx+intfrac12xcos 4xdx=frac14x^2+I_1$

Tính $I_1=intfrac12xcos 4xdx$.

*

$Rightarrow I_1=frac18xsin 4x-frac18intsin 4xdx=frac18xsin 4x+frac132cos 4x+C$

Từ đó: $I=frac14x^2+frac18xsin 4x+frac132cos 4x+C$

•$I=intfracxln left( x+sqrtx^2+1 ight)sqrtx^2+1dx$

*

Ta được $I=sqrtx^2+1ln left( x+sqrtx^2+1 ight)-x+C$

•$I=intln ^2left( x+sqrtx^2+1 ight)dx$

*
$Rightarrow I=x.ln ^2left( x+sqrtx^2+1 ight)-2intln left( x+sqrtx^2+1 ight).fracxdxsqrtx^2+1$

$=xln ^2left( x+sqrtx^2+1 ight)-2sqrtx^2+1.ln left( x+sqrtx^2+1 ight)+2x+C$

•$I=intleft( fracln xx ight)^2dx$. Ta tất cả $I=intfracln ^2xx^2dx$.

*

Ta được $I=-frac1xln x-frac1x+C$

Pmùi hương pháp 4. Pân hận hòa hợp đổi biến hóa số cùng cách thức nguyên hàm từng phần

•$I=intsin sqrtxdx$

Đặt $sqrtx=tRightarrow x=t^2Rightarrow dx=2tdtRightarrow I=intsin t.left( 2tdt ight)=int2tsin tdt$

*

Vậy $I=2sin sqrtx-2sqrtxcos sqrtx+C$

•$I=intsin left( ln x ight)dx$.

*

Từ đó $I=inte^tsin tdt=fracxleft< sin left( ln x ight)-cos left( ln x ight) ight>2+C$

•$I=intx^8e^x^3dx$.

*
 

Từ đó $I=frac13intt^2e^tdt=frac13left( x^6-2x^3+2 ight)e^x^3+C$

•$I=inte^sqrtxdx$.

*

Phương thơm pháp 5. Tìm nguim hàm bằng cách thức dùng nguyên ổn hàm phụ

Giả sử đề xuất tính $I=intfleft( x ight)dx$. khi kia ta tra cứu ngulặng hàm phú $J=intgleft( x ight)dx$ làm sao để cho vấn đề tính $I+J$ với $I-J$ đơn giản hơn. Chẳng hạn:

• $I=intfracsin xsin x+cos xdx$

Ta rất có thể xét $J=intfraccos xsin x+cos xdx$

Khi đó:

$I+J=intfracsin x+cos xsin x+cos xdx=intdx=x+C$

$I-J=intfracsin x-cos xsin x+cos xdx=-intfracdleft( sin x+cos x ight)sin x+cos x=-ln left| sin x+cos x ight|+C$

Từ đó suy ra: $2I=x-ln left| sin x+cos x ight|+CRightarrow I=frac12left( x-ln left| sin x+cos x ight| ight)+C$

• $I=intfrac4sin xleft( sin x+cos x ight)^3dx$

Ta hoàn toàn có thể xét $J=intfrac4cos xleft( sin x+cos x ight)^3dx$

Khi đó:

$I+J=4intfracsin x+cos xleft( sin x+cos x ight)^3dx=4intfracdxleft( sin x+cos x ight)^2=4intfracdxleft< sqrt2sin left( x+fracpi 4 ight) ight>^2$

$=2intfracdleft( x+fracpi 4 ight)sin ^2left( x+fracpi 4 ight)=-2cot left( x+fracpi 4 ight)+C$

$I-J=4intfracsin x-cos xleft( sin x+cos x ight)^3dx=-4intfracdleft( sin x+cos x ight)left( sin x+cos x ight)^3=2left( sin x+cos x ight)^-2+C$

Từ kia suy ra:

$2I=-2cot left( x+fracpi 4 ight)+2left( sin x+cos x ight)^-2+CRightarrow I=frac1left( sin x+cos x ight)^2-cot left( x+fracpi 4 ight)+C$

B. các bài luyện tập tự luyện

Câu 1: Tìm $int(x^3-2x)dx$

A.  <3x^2-2+C> B.

C.   D.

Câu 2: Tìm $int(sin x+cos 3x),dx$

A. B.

C. <-cos x-frac13sin 3x+C> D. <-cos x+frac13sin 3x+C>

Câu 3: Tìm $intleft( 5e^3x-frac16x+7 ight),dx$

A. B. <5e^3x-ln left| 6x+7 ight|+C>

C.

Xem thêm: Sự Thật Bất Ngờ Về Công Tử Bạc Liêu, Trần Trinh Huy

D. <5e^3x-frac16ln left| 6x+7 ight|+C>

Câu 4: Tìm $intsqrtxdx$

A. B.  <-frac12sqrtx+C>

C. $frac32xsqrtx+C$ D.  

Câu 5: Tìm ngulặng hàm của hàm số $f(x)=sin ^2x$

A. $intf(x)dx=frac12x+frac14sin ,2x+C$ B.  

C. D.  

Câu 6: Tìm ngulặng hàm của hàm số $f(x)=cos x.cos 3x$

A. $intf(x)dx=-frac18sin ,4x-frac14sin ,2x+C$ B.  

C. D.  

Câu 7: Cho . Đặt t=2sinx+1, lúc đó

A.   B.

C. D.  

Câu 8: Tìm $int(x+1)e^x^2+2xdx$

A. <2(x+1)e^x^2+2x+C> B.  

C. D.  

Câu 9: Khẳng định nào tiếp sau đây sai ?

A. B.  dx=intf(x)dx+intg(x)dx>

C. D.  dx=intf(x)dx+intg(x)dx>

Câu 10: Khẳng định nào dưới đây đúng?

A. B.  dx=intf(x)dxpm intg(x)dx>

C.  D.

Câu 11: Tìm ngulặng hàm của hàm số $y=f(x)=frac3cos ^2(2x-1)$

A.   B. <3chảy (2x-1)+C>

C.  <-3 ung (2x-1)+C> D. <-frac32cot (2x-1)+C>

Câu 12: $int2e^xleft( e^x-1 ight)^4dx=fracmn(e^x-1)^k+C$. Lúc kia

A. m + n + k = 5 B. m + n + k = 7

C.  m + n + k =12 D.  m + n + k = 16

Câu 13: $intxsin 2xdx=fracm2xcos 2x+fracsin 2xn+C$. khi đó

A. 2m + n = 0 B. 2m + n = 2 C.  2m + n =6 D.  2m + n = 8

Câu 14: $intleft( x+3 ight)e^-2xdx=frac-1me^-2x(2x+n)+C$. Khi đó

Bài viết liên quan

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *